Comparative Analysis Of Performance Levels Of Svm And Naïve Bayes Algorithm For Lifestyle Classification On Twitter Social Media

Authors

  • Fadlila Nurwanda Universitas Sebelas Maret, Surakarta
  • Winita Sulandari Universitas Sebelas Maret, Surakarta
  • Yuliana Susanti Universitas Sebelas Maret, Surakarta
  • Zakya Reyhana Solusi247, Yogyakarta

DOI:

https://doi.org/10.56910/ictmt.v1i1.65

Keywords:

Sentiment Analysis, Naïve Bayes Classifier, Support Vector Machine, Lifestyle

Abstract

Lifestyle is how individuals express themselves through their activities and interests and utilize their financial resources and available time. Twitter is a social network platform that allows people to express opinions and directly criticize various topics, including the recently widely discussed lifestyle topics. Topic classification on Twitter is central in facilitating the search, recommendation, and management of relevant content for users. This research aims to analyze public sentiment regarding lifestyle using 11,000 pieces of data with the keywords "concert", "watching films", "smoking", and others related to lifestyle. Research data is labeled according to the sentiment of public opinion towards lifestyle. Negative polarity for data that has the context of "underestimating", "insulting", "sarcastic", and "feeling sad". Positive polarity for data that has the context of "grateful", "praying", "feeling happy", and "encouraging". Neutral polarity for data that has the contexts “ask”, “predict”, and “feel surprised”. Next, the data enters the pre-processing stage, which consists of case-folding, tokenization, stopword removal, and lemmatizing. The analysis continues by dividing the data into training and test data with a ratio of 70%:30%. Sentiment analysis uses an algorithm Support Vector Machine (SVM) and Naïve Bayes Classifier (NBC). The analysis results show that the SVM algorithm provides better classification than NBC. In this case, the SVM algorithm produces accuracy, precision, recall, and value F1-Score the same, namely 61%.

Author Biography

Yuliana Susanti, Universitas Sebelas Maret, Surakarta

 

 

References

Adebiyi, A. A., Ogunleye, O. M., Adebiyi, M., & Okesola, J. O. (2019). A Comparative Analysis of TF-IDF, LSI and LDA in Semantic Information Retrieval Approach for Paper-Reviewer Assignment. Journal of Engineering and Applied Sciences, 14(10), 3378–3382.

Ahmad, A., & Gata, W. (2022). Sentimen Analisis Masyarakat Indonesia di Twitter Terkait Metaverse dengan Algoritma Support Vector Machine. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 6(4), 548–555.

Amelia, R., Darmansah, D., Prastiwi, N. S., & Purbaya, M. E. (2022). Impementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Masyarakat Indonesia Mengenai Drama Korea Pada Twitter. JURIKOM (Jurnal Riset Komputer), 9(2), 338.

Ananda, F. D., & Pristyanto, Y. (2021). Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 407–416.

Anger, I., & Kittl, C. (2011). Measuring influence on Twitter. ACM International Conference Proceeding Series, May.

Artikel, I. (2006). Lifestyle. Textile View Magazine, 01(73), 293–301.

Azhari, M., Situmorang, Z., & Rosnelly, R. (2021). Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes. Jurnal Media Informatika Budidarma, 5(2), 640.

Beigi, G., Hu, X., Maciejewski, R., & Liu, H. (2016). An overview of sentiment analysis in social media and its applications in disaster relief. Studies in Computational Intelligence, 639, 313–340.

Berry, M. W., & Kogan, J. (2010). Text mining: applications and theory. John Wiley & Sons.

Denny, M. J., & Spirling, A. (2018). Text Preprocessing for Unsupervised Learning: Why It Matters, When It Misleads, and What to Do about It. Political Analysis, 26(2), 168–189.

Dixon, S. (2022). Countries with most Twitter users 2022. Statista.

Fitri, E. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine. Jurnal Transformatika, 18(1), 71.

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for Multi-Class Classification: an Overview. 1–17.

Kadhim, A. I. (2019). Term Weighting for Feature Extraction on Twitter: A Comparison between BM25 and TF-IDF. 2019 International Conference on Advanced Science and Engineering, ICOASE 2019, 124–128.

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.

Lombu, A. S., Hidayat, S., & Hidayatullah, A. F. (2022). Pemodelan Klasifikasi Gaji Menggunakan Support Vector Machine. Journal of Computer System and Informatics (JoSYC), 3(4), 363–370.

Naufal, M. F., Arifin, T., & Wirjawan, H. (2023). Analisis Perbandingan Tingkat Performa Algoritma SVM, Random Forest, dan Naïve Bayes untuk Klasifikasi Cyberbullying pada Media Sosial. Jurasik (Jurnal Riset Sistem …, 8(1), 82–90.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.

Phienthrakul, T., Kijsirikul, B., Takamura, H., & Okumura, M. (2009). Sentiment classification with support vector machines and multiple kernel functions. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5864 LNCS(PART 2), 583–592.

Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications, 181(1), 25–29.

Wilianto, L., Pudjiantoro, T. H., & Umbara, F. R. (2017). Analisis Sentimen Terhadap Tempat Wisata Dari Komentar Pengunjung dengan Menggunakan Metode Naïve Bayes Classifier Studi Kasus Jawa Barat. Prosiding SNATIF, 439–448.

Downloads

Published

2023-12-31

How to Cite

Fadlila Nurwanda, Winita Sulandari, Yuliana Susanti, & Zakya Reyhana. (2023). Comparative Analysis Of Performance Levels Of Svm And Naïve Bayes Algorithm For Lifestyle Classification On Twitter Social Media. International Conference On Digital Advanced Tourism Management And Technology, 1(1), 215–230. https://doi.org/10.56910/ictmt.v1i1.65

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.