Classterization Of Village Welfare Levels With The K-Means Algorithm For Planning Quality Of Life Improvement Program

Case Study District XYZ

Authors

  • Yani Prihati Universitas AKI, Semarang
  • Alexander Dharmawan   Universitas AKI, Semarang
  • Tri Purwani   Universitas AKI, Semarang
  • Yusup Yusup Universitas AKI, Semarang
  • Berlian Setya Hanugraheni   Universitas AKI, Semarang

DOI:

https://doi.org/10.56910/ictmt.v1i1.62

Keywords:

Classterization, welfare levels, K-Means

Abstract

This research applies the concept of big data and the data mining process and aims to provide clustered data on village welfare levels which can help local governments to properly plan programs to improve the quality of life of village communities. Research case study in District XYZ  whose area includes 11 villages. The clustering process is carried out using the K-Means algorithm which groups data based on similar characteristics. The data analysis process was carried out using the RStudio tool and Microsoft Excel as a comparison. The data set used has 10 attributes, namely village name, number of Pre-Prosperous families, economic reasons (Alek) in the Pre-Prosperous column, non-economic reasons (Bulek) in the Pre-Prosperous column, number of Prosperous Families I (KS I), Alek in the KS column I, Bulek in column KS I, number of Prosperous Families (KS II), number of Prosperous Families (KS III) and number of Prosperous Families (KS III) Plus. Data processing with both tools show the same results, namely that there are 2 clusters. Cluster 1 is a cluster with a high level of welfare, consisting of 4 villages and Cluster 2 is a cluster with a low level of welfare, consisting of 7 villages.

Author Biographies

Alexander Dharmawan  , Universitas AKI, Semarang

 

 

Tri Purwani  , Universitas AKI, Semarang

 

 

Yusup Yusup, Universitas AKI, Semarang

 

 

References

Agustina Bidari, Teori Kependudukan, Bogor, Penerbit Lindan Bestari, 2020

[PemKab Kulonprogo] Pemerintah Kabupaten Kulonprogo, 2016, Pertumbuhan Penduduk dan Kualitas Hidup Kita, https://kulonprogokab.go.id/v31/detil/4527/pertumbuhan-penduduk-dan-kualitas-hidup-kita

Tarigan, P.M (2022). Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang (Studi Kasus: Toko Sinar Harahap), Jurnal Sistem Informasi, Teknologi Informasi dan Komputer, 12 (2), 51-61

Prihati, Y (2021), Implementasi Algoritma K-Means Untuk Pemetaan Prestasi Akademik Siswa Disekolah Dasar Terang Bagi Bangsa Pati, Jurnal Komputaki, 7(1)

Rahman, A.T (2017), Coal Trade Data Clusterung Using K-Means (Case Study PT. Global Bangkit Utama), ITSMART:Jurnal Ilmiah Teknologi dan Informasi, 6(1), 24-31

Widiari, N.P.A. (2020). Teknik Data Cleaning Menggunakan Snowflake untuk Studi Kasus Objek Pariwisata di Bali, Jurnal Ilmiah Merpati, 8(2)

Syaripul, A. N (2016), Visualisasi Data Interaktif Data Terbuka Pemerintah Provinsi DKI Jakarta: Topik Ekonomi Dan Keuangan Daerah, Jurnal Sistem Informasi ( Journal of

Information Systems), 12(2), 82-89

[Pemerintah Republik Indonesia] Undang-Undang Republik Indonesia Nomor 52 Tahun 2009 tentang Perkembangan Kependudukan dan Pembangunan Keluarga. Lembaran Negara RI Tahun 2009 BAB II. Sekretariat Negara. Jakarta

R Core Team (2022). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing

Zhou Hong (2020). Learn Data Mining Through Excel: A Step By Step for Understande Machine Learning Methods. Springer

Downloads

Published

2023-12-31

How to Cite

Yani Prihati, AlexanderDharmawan , TriPurwani , Yusup Yusup, & Berlian Setya Hanugraheni  . (2023). Classterization Of Village Welfare Levels With The K-Means Algorithm For Planning Quality Of Life Improvement Program: Case Study District XYZ. International Conference On Digital Advanced Tourism Management And Technology, 1(1), 184–191. https://doi.org/10.56910/ictmt.v1i1.62

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.