Development of Interactive Virtual Reality Application for Simulating Experimental Tensile Test


  • Rivai Wardhani Institut Teknologi Sepuluh Nopember, Surabaya
  • Naufal Alfandra Setyawan   Institut Teknologi Sepuluh Nopember, Surabaya  
  • Moh. Rafi Bima Adi Saputra   Institut Teknologi Sepuluh Nopember, Surabaya  



Virtual Reality, Virtual Lab, Tensile Test, Engineering education, Material science


Information technology has significantly transformed traditional educational systems into adaptable forms of learning.  Experimental tension test is a practical study included in the mechanical engineering curriculum, specifically as a part of Material and Metallurgy.  The fundamental issue arises from the deficiency in comprehending the understanding of mechanical properties, which is a result of traditional educational methods.  Virtual reality (VR) technology enhances the comprehension of the study of material properties for students studying mechanical engineering.  This study presents a virtual reality tool, called VR experimental tensile test. It is intended to be utilized in flexible learning.  Students as a user can investigate and examine the utilization of the program for learning and conducting safety lab orientation.  The application evaluation was conducted using the User Experience Questionnaire (UEQ).  This study suggests that using 3D model visualization in the virtual reality application enhances user experiences in learning tensile test and follow its lab orientation.

Author Biography

Naufal Alfandra Setyawan  , Institut Teknologi Sepuluh Nopember, Surabaya  




Ahmed, M. E., & Hasegawa, S. (2021). Development of online virtual laboratory platform for supporting real laboratory experiments in multi domains. Education Sciences, 11(9).

Ahram, T., & Falcão, C. (2017). Advances in Usability and User Experience: Proceedings of the AHFE 2017 International Conference on Usability and User Experience, July 17-21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA (Vol. 607). Springer.

Chacón, R., Claure, F., & de Coss, O. (2020). Development of VR/AR Applications for Experimental Tests of Beams, Columns, and Frames. Journal of Computing in Civil Engineering, 34(5).

Chan, P., Bernaerts, K., Van Gerven, T., & Dubois, J.-L. (2023). Virtual Reality Serious Game for Chemical Lab Safety Training in Industry and Academia: from Design, Development to Increased Motivation and Engagement.

Chan, P., Van Gerven, T., Dubois, J. L., & Bernaerts, K. (2023). Study of motivation and engagement for chemical laboratory safety training with VR serious game. Safety Science, 167(July), 106278.

Extremera, J., Vergara, D., Rodríguez, S., & Dávila, L. P. (2022). Reality-Virtuality Technologies in the Field of Materials Science and Engineering. Applied Sciences, 12(10), 4968.

Fombona-Pascual, A., Fombona, J., & Vázquez-Cano, E. (2022). VR in chemistry{,} a review of scientific research on advanced atomic/molecular visualization. Chem. Educ. Res. Pract., 23(2), 300–312.

Hernández-Chávez, M., Cortés-Caballero, J. M., Pérez-Martínez, Á. A., Hernández-Quintanar, L. F., Roa-Tort, K., Rivera-Fernández, J. D., & Fabila-Bustos, D. A. (2021). Development of virtual reality automotive lab for training in engineering students. Sustainability (Switzerland), 13(17).

Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515–1529.

Li, Z., Cao, Y., & Luo, J. (2023). Proceedings of the 2022 2nd International Conference on Education, Information Management and Service Science (EIMSS 2022). In Proceedings of the 2022 2nd International Conference on Education, Information Management and Service Science (EIMSS 2022) (Vol. 2). Atlantis Press International BV.

Lovreglio, R., Gonzalez, V., Feng, Z., Amor, R., Spearpoint, M., Thomas, J., Trotter, M., & Sacks, R. (2018). Prototyping virtual reality serious games for building earthquake preparedness: The Auckland City Hospital case study. Advanced Engineering Informatics, 38, 670–682.

Ortelt, T. R., & Ruider, E. (2017). Virtual lab for material testing using the Oculus Rift. 2017 4th Experiment@ International Conference (Exp. at’17), 145–146.

Pelargos, P. E., Nagasawa, D. T., Lagman, C., Tenn, S., Demos, J. V, Lee, S. J., Bui, T. T., Barnette, N. E., Bhatt, N. S., Ung, N., & others. (2017). Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. Journal of Clinical Neuroscience, 35, 1–4.

Poyade, M., Eaglesham, C., Trench, J., & Reid, M. (2021). A transferable psychological evaluation of virtual reality applied to safety training in chemical manufacturing. ACS Chemical Health & Safety, 28(1), 55–65.

Ragan, E. D., Bowman, D. A., Kopper, R., Stinson, C., Scerbo, S., & McMahan, R. P. (2015). Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Transactions on Visualization and Computer Graphics, 21(7), 794–807.

Rubio, M. P., Vergara, D., Rodr’iguez, S., & Extremera, J. (2019). Virtual reality learning environments in materials engineering: Rockwell hardness test. Methodologies and Intelligent Systems for Technology Enhanced Learning, 8th International Conference 8, 106–113.

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0 - BCG Report. The Boston Consulting Group, 1–20.

Stefan, H., Mortimer, M., & Horan, B. (2023). Evaluating the effectiveness of virtual reality for safety-relevant training: a systematic review. In Virtual Reality (Vol. 27, Issue 4). Springer London.

Syed, Z. A., Wang, T., Frady, K. K., Madathil, K. C., Bertrand, J., Hartley, R. S., Wagner, J. R., & Gramopadhye, A. K. (2017). Use of virtual reality tools in an undergraduate mechanical engineering manufacturing course. ASEE Annual Conference and Exposition, Conference Proceedings, 2017-June.

Talaba, D., Horváth, I., & Lee, K. H. (2010). Special issue of Computer-Aided Design on virtual and augmented reality technologies in product design. Computer-Aided Design, 42(5), 361–363.

Tang, J. L., & Wu, F. S. (2010). VRML-based laboratory system for material mechanical performance testing. CAR 2010 - 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics, 1, 202–205.

Tarng, W., Chen, C. J., Lee, C. Y., Lin, C. M., & Lin, Y. J. (2019). Application of virtual reality for learning the material properties of shape memory alloys. Applied Sciences (Switzerland), 9(3).

Tee, N. Y. K., Gan, H. S., Li, J., Cheong, B. H.-P., Tan, H. Y., Liew, O. W., & Ng, T. W. (2018). Developing and demonstrating an augmented reality colorimetric titration tool. Journal of Chemical Education, 95(3), 393–399.

Vergara, D., Fernández-Arias, P., Extremera, J., Dávila, L. P., & Rubio, M. P. (2022). Educational trends post COVID-19 in engineering: Virtual laboratories. Materials Today: Proceedings, 49, 155–160.

Vergara, D., Rubio, M. P., & Lorenzo, M. (2014). Interactive virtual platform for simulating a concrete compression test. Key Engineering Materials, 572(1), 582–585.




How to Cite

Rivai Wardhani, NaufalAlfandraSetyawan , & Moh. Rafi Bima Adi Saputra  . (2023). Development of Interactive Virtual Reality Application for Simulating Experimental Tensile Test. International Conference On Digital Advanced Tourism Management And Technology, 1(2), 570–580.




Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.